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ABSTRACT 

We show that if X is the closed linear span in Lp[0,1] of a subsequence of the 
Haar system, then Xis isomorphic either to lp or to Lp [0,1], [1 < p < oo]. 
We give criteria to determine which of these cases holds; for a given sub- 
sequence, this is independent ofp.  

The ~p-spaces were introduced by J. Lindenstrauss and A. Petczyfiski [5] as 

generalizations of Lp(/~) spaces; their unit-balls possess similar properties. In fact 

it has been shown that a separable B-space is a ~p-space if and only if it is iso- 

morphic to a complemented subspace of Lp[0,1] but not isomorphic to 12, 

(1 < p # 2 < ~).  The separable La2-spaces are those which are isomorphic to 12 

(Lindenstrauss and Pelczyr~ski [5], Lindenstrauss and Rosenthal [7].) 

Thus, to find the isomorphic types of separable L, ep-spaces (1 < p < oo) we 

need to find the isomorphic types of complemented subspaces of Lp[0, 1]. There 

are, at present, nine known different isomorphic types of separable ~p-spaces 

(1 < p # 2 < ~) ,  mostly due to H.P. RosenthaI [9]. 

It has been shown recently by W.B. Johnson, H.P. Rosenthal and M. Zippin 

[4] that the ~p-spaces have bases. Hence the problem of finding the isomorphism 

types of separable ~p-spaces is the same as finding the isomorphic types of 

complemented closed linear spans of subsequences of bases in Lp[0,1], (1 < p < oo). 

We give a partial result towards the solution of this problem. 

Since the Haar basis is the most meager of all bases for Lp[0, 1], this is a 
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natural starting point (Lindenstrauss and Petczyfiski [6]). It is unconditional so 

all subsequences yield complemented subspaces. 

The Haar functions on the unit interval are usually defined as follows: 

yl(t) = 1 

and y2n+m(t) = 

2m - 2 2m - 1 
[ i if 2,+----F---<t < 2 , + ~ ,  

t ~ 2m 
- 1  if 2 m -  l < t < - -  

2n+1 = 2n+1 ' 

0 otherwise, 

for n = 0.-. and m = 1 ... 2". 

It is standard to normalize the Haar functions so that the biorthogonal functional 

associated with the ith Haar function is simply integration with respect to the ith 

Haar function. For our purposes, however, it is more convenient to have these 

functions normalized with the supremum norm as above. In the following we will 

always use {Yi} to mean the Haar functions. 

It is well known that the Haar functions form an unconditional basis for 

Lp[O, 1] if 1 < p < ~ .  The proof  is due to R.E.A.C. Paley and J. Marcinkiewicz 

and can be found in I. Singer [10]. 

We now state some well-known properties of  unconditional basic sequences and 

some properties of  Ip and Lp[0,1] which we wilt use. 

LEMMA 1. I f  {xi} is an unconditional basic sequence and {xi, } a subsequence, 

then the map P: 

P(xi,) = xi, ,, n = 1... and P(xi) = 0 for other indices, defines a projection of 

[x/] onto [x,,]. In fact an upper bound can be given for the norms of such 

projections f rom a particular unconditional basis. 

LEMMA 2. I f  {Xi} is an unconditional basic sequence in a B-space X,  if 

[xi] is complemented in X by a projection P, and if {zi} is a sequence in X with 

z = ,  II P LI II x,'l[ JI z, II < 1 where x~ is the coefficient functional associated 

with xi, then {zi} is an unconditional basic sequence, [zi] is complemented in X,  

and the correspondence x i ~ z  i defines an isomorphism [2]. 

LEMMA 3. An infinite-dimensional complemented subspace of Ip is isomorphic 

to Ip (1 < p < ~ )  [8]. 
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LEMMA 4. Let {di} be 

and D their closed linear 

Define sets D 1 and Dn, m 

Suppose support di- = 
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a sequence of { -- 1,0, 1} valued measurable functions 

span in Lp[0, 1] for some p with 1 < p < o0. 

for n = 0 . . . , m  = 1 . . .2  "+1 as follows: 

Dx = support d~ 

D..2m- 1 = support d2+.+m 

D.,2m = support d2-~+. 

D 1 = Do. 1 U Do, 2 

Dn, m = Dn+ l ,2m_ ! U Dn+ l.2m 

and that there exist constants K1 and Kz with 

0 < K 1 < #(O~) < K2 < ~ and KI < 2 n+ 1/~(D~.m) < K2. 

Then the correspondence Td i = Yi between {di} and the Haar system {y,} 

defines a la:tice isomorphism between D and Lp[0, 1]. Hence D forms a sublattice 

and is complemented in Lpl-0, 1] by a projection of norm 1. 

In addition 

II TII 
II z-'ll--< t'"' ' 

PROOF. It is easy to see from definitions that the unions 

D 1 = Do, 1 L/Do. 2 

D..,n = D.+l,2m_ 1 L)D.+I,2m 

are disjoint. 

Thus if  it1 "" itk are constants, the functions ~itid~ and ~2~y~ achieve the same 

finite set o f  values. 

In fact i f  }'1 = [0, 1] 

Y..2m- 1 = support Y~+m 

Y~.2~ = support Y2n+m 

then for every 2 the set o f  points t where ~2idi(t) = it is a disjoint union of  sets 

Dn,m while the set of  points r where EitiY~(0 = it is the corresponding union of  

sets Y~,m. 

Our  inequalities imply easily that  
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KI < P(D"'m) < K2 
= v ( L . m )  = 

and 

g I < P(D1) < K 2 
= # ( y ~ )  = 

so that it readily follows that T is a lattice isomorphism with given estimates on 

norms. 

The fact that D is complemented with projection of  norm 1 follows from a 

theorem of Ando [1] which says that this is true for all lattice subspaces of  

Lp[O, 1"] if 1 < p < oo. 

We are now ready to state and prove: 

THEOREM. Let {xi} be a subsequence of the Haar system. Then if 1 < p < oo 

and X is the closed linear span of {xl} in Lp[O, 1], either 

X is isomorphic to lp 
or 

X is isomorphic to Lp['0,1]. 

PrtooF. Consider the set 

A --- {t ~ [0,1] I t ~ support x~ for infinitely many indices i}. 

The set A is clearly measurable. 

We show that:  

if/~(A) = 0 then X ~ lp 

if ~t(A) > 0 then X ,,~ Lp[-0,1], 

where ~ means, as usual, isomorphic. 

Case 1. #(A) = 0. We will show that X is a complemented subspace of  a 

space isometric to lp and appeal to Lemma 3. (X is Clearly infinite-dimensional 

since it arises from a subsequence (infinite) of  a basic sequence.) 

First it is clear that if {Sn} is a sequence of  mutually disjoint measurable sets 

with p( I -0 ,1] -  u Sn)= 0 and X IS n is the restriction of  X to the set S n then 

(~X[Sn)p is a subspace of  Lp[0,1] which contains X. The space X is clearly 

complemented in any such space by restriction of  the projection of  Lp[0, 1] onto 

X given in Lemma 1. 

We will now choose sets {Sn} with the above properties and so that ( ~ X ]  S~)p 

will obviously be isometric to I r In fact we will pick the sets so that X is constant 

on each one. 
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Consider the sets An, n = 0,1, ..., ". 

An = {t ~ [0, 1] I t e support xi for exactly n indices i}. 

We mean, of  course, the supports as given by the original definition of  the Haar 

functions and not the support of  a function equal a.e. to a Haar function. 

The sets A and An are clearly pairwise disjoint and [0,1] - u An --- A so this 

set has measure zero. 

Fix n for a moment and consider only those functions xi which appear in the 

definition of  An. By a maximality argument repeated n times, we can split this 

(possibly finite) sequence into n subsequences {xi} i ~ Bn,~, j = 1... n with each 

subsequence consisting of  disjoint functions and so that the supports get finer, 

that is: 

if i ~/3,u for j ~ 2 then there exists k ~ B nu_ 1 with supp xk ~ supp xi (properly). 

It is then easy to see that An = Uk~B.,.(An n supp Xk)= Uk~n.,.(An n suppx~-) 

U Uk ~ a,..(An n supp Sk). The sets in the final union clearly are disjoint and have 

union A n. and X is constant on each one. 

The case n = 0 is easy since X is constant 0 on Ao. 

Doing this for all n and numbering our sets properly, we arrive at the promised 

sets Sn; X is constant on each set Sn so X I S n is either 0 or 1-dimensional for all n. 

Case 2. p(A) > 0. By Lemma 1, X is complemented in Lp[O, 1]. 

Suppose we can show that X contains a complemented subspace Y isomorphic 

to Lp[O, 1]. 

We will then get X ~ Lp[0, 1] by the decomposition method of  Pe/czyfiski. 

We now proceed to construct such a subspace Y. We will pick for Y a block 

basic sequence with respect to {xi} sufficiently close to a sequence which satisfies 

the hypotheses of  Lemma 4. 

Consider the sequence {xi}. By induction and a maximality argument we can 

find a countable number of  subsequences {xi}, i~ Nk (k = 1 ...), each possibly 

finite or infinite, with 

Nk~Nj= ~ i f  k # j  

U N k  = N 

i f  i, j e Nk for some k, then supp xi O supp xj  = 

unless i = j 

i f  i e Nk for some k > 2, then there exists 
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J ~ Nk- t  with supp x~ c supp xj .  

What we have really done is split up the sequence into a countable number of  

subsequences so that supports of  functions get finer from one subsequence to the 

next and so that the functions in any one subsequence are disjoint from one 

another. This is similar to what we did in the previous case on the A n . From the 

fact that p(A) > 0, it is easy to see from what follows that we actually have an 

infinite number of  subsequences. 

It is not difficult to see that the sets A k = Ui~ Nk supp X~ are decreasing, contain 

A, and ~k~= 1 A k  -~ A. 

For n = - 1,0,.-. and given positive constants c., pick k, increasingly strictly 

with n so that 

p(Ak. -- A) < c,. 

Then define functions b~, i = 1,2, ... as follows: 

bt = Z x i, b 2 = Z x i 
i~ N k .  I i~ Nko 

and inductively thereafter by 

b + b2.+,, = ]~xi, for i e N k .  , supp x i = supp (2--~+t(,,+x)/2~) 

if rn is odd and 

b2.+, , = ~,xi, for i~Nk. ,  supp x i ~ supp (bz2-~+E(,,+l)/2~) 

if  rn is even, for n = 1... and m = 1,.. 2". 

There is, o f  course, no problem with convergence since in all cases we are taking 

disjoint sums of  functions with absolute value 1. 

It is easy to see that the sequence {bi} does not necessarily satisfy the hypotheses 
of  Lemma 4. 

We will show that if the constants c. are picked small enough then Lemma 4 

can be applied to {di}, and that there is a set I of  integers for which ~i~ ,ll d;ll 

]l b, ll is small enough to imply that Y= [bi]i~i is isomorphic to Lp[0,1] and 

complemented in X. (It is clear that any such space Y is a subspace of  X.) 

I f  

B1 = support bl 

B n , 2 m - 1  = support b2.+m 

B,,2,, = support bE.+,, 
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it is then easy to see that  

D 1 = A = B 1 t3 A 

Do,r. = A n Bo, m where the sets 

D, ,  Do,, . correspond to {di} as in Lemma 4. 

N o w  all the functions bi are symmetric for  i > 2 so that  

11(Bn,2rn- 1) = ~(Bn,2ra) 

= �89 b2.+m). 
We get 

~(/~ .2 . -3  ->- .(Do,2.-1) 

= p ( B n , 2 r a _ l )  - l.l(Bo.2m_ 1 -- A)  

= �89 b2.+m) - P(Bo,2m- 1 - A) 

> �89 b2.+,.) - co 

> �89 d2-+m) - c. 

since Bo,2.,-1 c Akn. 

Similarly 

It(Bo,2m ) > p(Do,2m ) > �89 b2.+z) - co 

__> �89 d2.+m) - c . .  

On  the other hand  

+ 
if  m is odd ,  support  d2.+m = support  d2--,+t(,.+l)/2j 

a n d  so 

p(support  d2.+,.) 

Israel 2. Math., 

= p(D._ ~,2t(.,+ I)/2+- ~) 

= p ( B . _  1,2t(m+ 1)/21-1) - p ( B . _  1,2[(m+ 1)/2]- 1 - -  A )  

= �89 p(support  bz . - ,  + t(m + 1)/21) - - / I (B._ 1.2t~m + 1)/21-1 -- A) 

> �89 p(support  b2.- ,  + t(m + 1)/21) - cn- 1 

=> �89 d2.- ,  + t(,.+ 1)/:1) - c._ 1. 

I f  m is even, we get similarly 

p(support  d2.+m) >- p(support  d2.- ,  +t(m+ 1)/21) -- C._ 1. 

Combining these inequalities we get 
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>__ �89 #(support d2-+m) - c. 

>= �88 d2.-1 +t(,.+ 1)/2)a) - �89 1 -  c 

>- {/* (support d2.-2+t(t(m + 1)/2j+ 1~12~) - �88 Cn--2 -- �89 r 1 -- Cn ~ " "  

and hence inductively 
1 

/*(O.,.) >= V+ ~ 

and so 

#(support b2) - ~ cj2 j-" 
j=O 

2"+I/*(D.,m) > /* (suppor tb2) -  ~] 
j = 0  

> /*(A)-  ~ cj2 ~+t 
j = 0  

Thus, our first requirement on the constants cj is that 

K I = / * ( A ) -  ~ ci2 j + l > 0 .  
j = 0  

This can easily be done since/*(A) > 0. 

It is easy to see that 

/*(D,) >/*(31) >/*(A) > K1. 

We can show on the other hand that 

I2(Dn,2m) <_ #(Bn.2m) = �89 /*(support  b2.+m) 

<= {/,(support b~.-1 + t(., + 1)I2~) 

= �88 b 2 . -  t+ttm + 1)/21) 

= < ~/*(support b~-2+k) 

C j2  j + 1 

1 
_-< "'" < 2~-WT/*(support b2) 

4l l 

where m is odd and the __+_ is either + or - depending on m, and k depends on m. 

A similar argument implies that 

1 
#(D..,.) < 2.-Ti-/*(support bz) for all n, m. 

But #(DI) </*(B1) </*(support b/) =</*(a) + c o </*(A) + c-1 and so 

2 "+ 1/.t(O..m) </~(a) + c_ 1 

/*(Dx) </*(A) + c_ t. 
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We let K2 =/~(A) + c_ 1 and apply Lemma 4. Then D is isomorphic to Lp[O, 1] 

and complemented by a projection of  norm 1. 

Consider the index set ! consisting of 2 and all integers of  the form 2" + m for 

n = 1... and m = 1.-.2"-1 

By Lemma 1 there is a constant K depending only on the Haar system such that 

[Yi]i~ i is complemented by a projection of norm at most K. 

But then [di t  ~ ~ is complemented in D, hence also in Lp[0, 1], by a projection 

with norm at most K II TII II T- '  II, where T(d 3 = Yi. (D is complemented, norm 1, 

in Lp[O, 1].) 

I f  we can show that 

w-- x KIITII IIT-'II Ild:ll lld,-b, ll<1 then, b y L e m m a 2 ,  
i~ l  

Y =  [bi]~ x will be complemented in Lr[O, 1] and isomorphic to [d i l  ~ l and hence 

isomorphic to [Yi]i~ i. 

t ! ! 
But y~T(dj)= Y'i(Y3 = 5ij so that y~T= di. The functional Yi consists in in- 

tegrating with respect to Yi, with a normalizing factor. 

It is not difficult to show that II Y'~.+m 11 -----< 2~ 
Thus 

II dt2"+m 11 =< II Y2n+m II II rll --- 2"/'11Zl[' 
Secondly 

and so 

II d 2 " + m  - b2"+m II = (p(support b2.+m- A)) alp 

= < ct  Ip 

w ~ K 11 Tll II T-'l l  
2n_1 

I1 d~ 11 II d2- a2 II + ~: X 11 d&.+m II 
n = l  m = l  

--< ,,IJ I I , - '  II + Cn'') 

II d2-+.-b2-+m II) 

and this can be made smaller than 1 at the same time as getting K1 > 0 if 

and 
( ~,(A_) + ~_ __, ~ ' / ,  

I~(A)-  ~Ecj2 j +t]  < 2 

r l l 
<=K t 

(A) - c j2 j + 1 
0 

+ Cn"2" '+n" ) 
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c~,/P+ Ec2/P2 "-1+"IF < 1 
K 

(I~(A) - ~,cj2 j+ i)i/p = 4 " 

This is easily done. 

Thus [b~]~, z is isomorphic to [Yi]i~ ~ and complemented in Lv[O, 1] hence also 

in X. But by unconditionality of  the Haar  system, [Yi] , , ,  is clearly isomorphic 

to Lp[0,�89 and so also to Lp[O, 1]. 

QUESTION. What are the isomorphic types of  complemented closed linear spans 

of  blocks with respect to the Haar  system? I f  1 < p < oo, is every separable 

Lap-space thus realizable? How about Lap-spaces with unconditional basis? 
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